
Multicore Diversity: A Software Developer’s Nightmare

David A. Penry
Department of Electrical and Computer Engineering

Brigham Young University
dpenry@ee.byu.edu

Abstract
Commodity microprocessors with tens to hundreds of processor
cores will require the widespread deployment of parallel programs.
This deployment will be hindered by the architectural and environ-
mental diversity introduced by multicore processors. To overcome
diversity, the operating system must change its interactions with the
program runtime and parallel runtime systems must be developed
that can automatically adapt programs to the architecture and usage
environment.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors—Run-time environments; D.4.1 [Operating
Systems]: Process Management—Scheduling

General Terms Performance, Algorithms, Design

Keywords multicore, runtime parallel optimization, parallel adap-
tation, packaging, multicore diversity

1. The Problem of Diversity
Future microprocessor generations will be distinguished by in-
creases in the number of cores per die; within ten years mainstream
microprocessors will have tens to hundreds of processor cores. As
with all previous processor generations, users will expect applica-
tion performance to increase and new applications such as recog-
nition, mining, and synthesis (RMS)[2] to be enabled when they
purchase these new multicore chips. If users’ expectations are to be
met, applications must come to take advantage of multiple proces-
sor cores.

For the software developer, taking advantage of multiple proces-
sor cores is not easy. Effective parallelization requires the devel-
oper to both discover the potential parallelism and locality inher-
ent in an application and then package that parallelism and locality
into multiple threads of execution such that both parallelism and lo-
cality are exploited as much as possible.[7] This process is highly
architecture-dependent. A parallel program optimized for one par-
ticular system will not be efficient on more than a few highly simi-
lar systems.

Unfortunately, multicore systems will not be highly similar to
one another. Instead, they will be both more diverse and more
widely deployed than past parallel systems. This diversity will take
two forms:

• Architectural diversity Multicore systems will have differing
numbers of cores, core complexity (e.g. in-order vs. out-of-
order), cache hierarchies, and memory bandwidth. Intentional
heterogeneity among the cores, both in their performance and
their capabilities, is extremely likely.

• Environmental diversity Mainstream multicore systems will
operate in a desktop computing environment. Desktop comput-
ing is a highly dynamic environment; there are often multiple

applications running simultaneously and the mix of applica-
tions changes frequently. It will not be acceptable for an ap-
plication to wait until a fixed set of required resources are avail-
able. Instead, applications must adapt continuously to whatever
resources the OS makes available at the moment.

Parallel application performance is highly sensitive to how well
an application’s parallelism and locality packaging is tuned for
an architecture and environment.[8] This can be seen easily by
considering the simplest architectural parameter: the number of
cores. If an application uses fewer threads than there are cores
available to it, some performance potential could be lost, as more
threads may perform better. On the other hand, if an application
uses more threads than there are cores, context switching ensues
and application performance can fall dramatically.

Architectural and environmental diversity will make it impossi-
ble to determine a priori how an application should be packaged.
Thus distribution of a highly-optimized multicore program will not
feasible. Overcoming diversity will be a nightmare for developers
who wish to deploy efficient parallel programs on multicore plat-
forms.

2. Overcoming diversity
As mentioned before, parallelization consists of two activities: dis-
covery and packaging. Discovery is achieved by determining what
parallelism and locality is present in an application. Packaging is
performed by mapping and scheduling the application’s work onto
threads and laying out its data. The application may be packaged
into more threads or less threads than there are resources. Pack-
aging can be performed both statically and dynamically and can
operate on both coarse-grained and fine-grained tasks.

Examination of the characteristics of the discovery and packag-
ing activities reveals that:

1. Discovery finds properties inherent in an application’s logic and
programming model that are independent of the architecture
and usage environment.

2. Packaging uses the properties found through the discovery in an
architecture- and environment-dependent fashion.

Thus discovery and packaging interact with diversity in very
different ways, suggesting a solution to the problem of diversity:
perform discovery at compile time, but delay packaging until both
the architecture and the usage environment are known: i.e., until
runtime.

Runtime packaging could be performed by an application itself;
e.g., the inspector-executor model of execution[6] is a special case
of application-driven runtime packaging. However, doing so in
every application would place a significant burden upon developers.
A better solution is to provide a parallel runtime system that can
perform packaging. Figure 1 is a block diagram of such a runtime
system, which operates in the following manner:

100



1. The developer writes applications in any of a variety of new
or legacy programming languages and models, making no as-
sumptions about the target system.

2. The compilers for these languages perform parallelism and lo-
cality discovery using user annotations, code analysis, or infer-
ence from the language semantics and produce binaries aug-
mented with information about application parallelism and lo-
cality (abbreviated as PLI). PLI is found during compilation,
when time for analysis is readily available; however, the com-
piler may find that some PLI is data-dependent and indicate that
the PLI must be analyzed further at runtime using application
data.

3. The runtime system uses the PLI, runtime application data,
and online performance feedback to package the application
for the architecture and available resources. This packaging
uses very fine-grained units of work not restricted to high-level
language constructs such as loop iterations, thereby increasing
scheduling flexibility and potential parallelism above that of
coarser-grained parallel adaptation such as [3, 8]. The resulting
schedule may contain fewer threads than there are resources
when additional threads would have low efficiency; to prevent
context switching, the schedule never contains more threads.

4. The application threads execute using the mapping and sched-
ule produced by the packaging step. To amortize the cost of pro-
ducing the schedule, the schedule is reused when possible. For
example, in an iterative solver, the parallel schedule for an indi-
vidual iteration would be reused in each iteration. The use and
reuse of a computed schedule distinguishes this style of runtime
packaging from work-stealing or dynamic task scheduling.

5. When the available resources change, the runtime system re-
packages the application. Feedback from performance monitor-
ing may also trigger re-packaging.

3. Changes to Operating Systems
Runtime packaging will affect the architecture of operating sys-
tems. The most important effect will be to relieve the operating
system of the responsibility to schedule the individual threads of
applications. Instead, the operating system’s scheduler becomes re-
sponsible solely for determining what “mix” of applications should
be currently running and what resources they should be allowed to
use. In making this decision, the scheduler will take into account
application priorities, overall system throughput, fairness, and how
efficiently applications can use the resources. The resulting sched-
uler architecture is similar to Exokernel[4] or Corey[1].

The second important effect will be that applications and operat-
ing systems will need to negotiate for resources in more detail than
they now do. The application runtime system will request resources
and inform the operating system about how efficiently it can use
those resources. The operating system will decide what resources
to allocate and inform the application as the allocation changes, al-
lowing the application to repackage for the new resource allocation.
There will need to be mechanisms to allow the application a “grace
period” in which to perform its repackaging, as well as mechanisms
for validating an application’s efficiency claims.

4. A Plan of Action
Diversity will be a major hindrance to practical parallel program
deployment for multicore systems. A parallel runtime that performs
packaging coupled with the changes to the operating system men-
tioned in the previous section has the potential to overcome this
diversity. Development of such a runtime will require significant
improvements in multiprocessor parallelism and locality packag-
ing algorithms that overcome the following challenges:

Optimizer
Dynamic

Packager
Dynamic

Profiler
Online

Controller
Optimization

Adaptive Online Parallel Optimization Run−time

Binary
+

PLI

Developer

Compile−Time

Run−Time

CompilerApplication

Figure 1. A parallel runtime packaging system

• Packaging algorithm performance. The performance over-
head of fine-grained runtime packagers must be reduced.
Achieving this reduction requires two advances: packagers that
can exploit any regularity present in the application’s task struc-
ture (while still working when there is no such regularity) and
packagers that can themselves be parallelized.

• Trading off locality with parallelism. Runtime packagers
must simultaneously improve the application’s temporal, spa-
tial, and thread locality while maintaining good load balance
and parallel efficiency. Locality will be particularly important
for commodity systems with limited memory bandwidth.

We are currently developing such a parallel runtime. The run-
time is built upon the LLVM compiler framework[5], which pro-
vides both static and JIT compilation capabilities. We are evaluat-
ing new packaging algorithms applied to the kernels of RMS appli-
cations, with a particular emphasis on improving locality.

References
[1] S. Boyd-Wickizer, H. Chen, R. Chen, Y. Mao, F. Kaashoek, R. Morris,

A. Pesterev, L. Stein, M. Wu, Y. Dai, Y. Zhang, and Z. Zhang. Corey:
an operating system for many cores. In Proceedings of the 8th USENIX
Symposium on Operating Systems Design and Implementation, 2008.

[2] Y.-K. Chen, J. Chhugani, C. J. Hughes, D. Kim, S. Kumar, V. W. Lee,
A. D. Nguyen, and M. Smelyanskiy. Convergence of recognition,
mining, and synthesis workloads and its implications. Proceedings of
the IEEE, 96(5):790–807, May 2008.

[3] Y. Ding, M. Kandemir, P. Raghavan, and M. J. Irwin. A helper thread
based EDP reduction scheme for adapting application execution in
CMPs. In Proceedings of the International Parallel and Distributed
Processing Symposium 2008, pages 1–5, 2008.

[4] D. R. Engler, M. F. Kaashoek, and J. O’Toole Jr. Exokernel:
An operating system architecture for application-level resource
management. In Proceedings of the 15th ACM Symposium on
Operating System Principles, pages 251–266, 1995.

[5] C. Lattner and V. Adve. LLVM: A compilation framework for
lifelong program analysis and transformation. In Proceedings of
the International Symposium on Code Generation and Optimization,
pages 75–86, 2004.

[6] J. H. Saltz, R. Mirchandaney, and K. Crowley. Run-time parallelization
and scheduling of loops. IEEE Transactions on Computers, 40(5):603–
612, May 1991.

[7] B. Smith. Reinventing computing. In Manycore Computing Workshop,
June 2007.

[8] M. A. Suleman, M. K. Qureshi, and Y. N. Patt. Feedback-driven
threading: Power-efficient and high-performance execution of multi-
threaded workloads on CMPs. In Proceedings of the 13th International
Symposium on Architectural Support for Programming Languages and
Operating Systems, pages 277–286, 2008.

101




