
SPRI: Simulator Partitioning Research Infrastructure 

 
Abstract—Using FPGAs as architectural simulation 
accelerators has been widely discussed in the computer 
architecture design community. We previously proposed a 
hybrid SW/HW simulation infrastructure named SPRI 
(Simulator Partitioning Research Infrastructure) which 
automatically partitions the general timing model into the 
software and hardware portions for simulation speedup, 
conforming to the set-based partitioning specification. The 
SPRI platform takes two main inputs—partitioning 
specification and the architectural model; it then produces 
a modified SW architectural binary and a HW-accelerated 
RTL description which can communicate with each other, 
called hybrid SW/HW co-simulator—the final output of 
SPRI. Various experiment cases have been also run 
through the SPRI infrastructure to test its partitioning 
functionality and API wrapper generation.  
 

I. INTRODUCTION 
Today's simulators are too slow to simulate many-core chips. 

Reconfigurable hardware acceleration is believed to be a 
flexible way to help achieve fast and cycle-accurate simulation 
results. Previous efforts have required massive investments of 
time and effort in both RTL and simulator design and have 
produced “one-off” solutions. That is, when simulating 
different target architectures, the partitioning decision are made 
specific to the different simulator and the hardware has to be 
manually redesigned in hardware description language. Lots of 
previous work has been done to explore the hardware 
acceleration potential [1], [2]. However, none of them involve 
an automatic procedure of partitioning a target architectural 
model and generating its respective hybrid SW/HW co-
simulator. Thus, the purpose of proposing SPRI infrastructure 
in WARP’2007, is to try to solve this problem. A more detailed 
description of the SPRI platform is presented as follows.  

SPRI has three main blocks—partitioner, API generator and 
SystemC-to-VHDL synthesizer. Its block diagram is shown in 
Figure 1.  

First, the partitioner takes the target timing model and builds 
the simulation database which contains the structural 
information of the target model; it partitions out from the 
simulation database those units that need to go to the hardware 
according to the input partitioning specification. Then the 
partitioner modifies the LLVM intermediate representation (IR) 
of the target model and make sure the replacement portion on 
the SW side can successfully talk with the HW portion.  

Second, the API generator is in charge of creating the SW 
and HW wrappers. The SW wrapper is the set of functions 
which encapsulate the actual host-to-device APIs and thereby 
hides them from the user and the simulation codes. The HW 
wrapper is a template-based VHDL program that specifies the 
controlling logic and the signal connection between the outer 
communication channel and the internal components. The SW 
and HW wrapper are designed to act as such communication 
channel.  

Figure 2. the SW/HW Cosimulator
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Third, SPRI utilizes the Trident synthesizer as our SystemC-

to-VHDL tool [7]. Because it uses the same LLVM 
intermediate representation (IR) also adopted by the partitioner, 
the trident tool can directly synthesize the result of the 
partitioner and the API generator.  

The result of this process, as in Figure 2, is a modified 
software model with the necessary API wrappers to 
communicate with an equivalent hardware model placed in an 
FPGA.  The API generator and the partitioner ensure that both 
parts will communicate with each other and keep data coherent 
on the partitioning boundary 
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II. SPRI IMPLEMENTATION STATUS 
The SPRI infrastructure is currently under construction. The 

status on the development of these three SPRI blocks—
partitioner, API generator and synthesizer are discussed below.  

The partitioner is capable of reading the partitioning 
specification and extracting the structural information from the 
simulation database for the API generator. The partitioner is 
also capable of revising the software model and interfacing 
with the API generator.  The hardware portion has been 
separated and we are currently in the process of interfacing 
these portions with the Trident synthesizer. It is planned that 
the partitioner will support different-level partitioning tasks 
including instance level, process level, function level and data-
layout level, even though it only supports instance-level and 
process-level partitioning presently. For instance, if inputting 
such partitioning description as (1), 

 "tohw [DLX::ALU] | [DLX::IFID_Register]"                   (1) 

the ALU and IFID_register instances of the DLX processor 
model will be synthesized into hardware and the respective SW 
and HW wrappers will be automatically generated. Also, SPRI 
can send only the rising-edge process of the IFID_Register 
instance together with the ALU into hardware when using (2). 

"tohw [DLX::ALU] | [DLX::IFID_Register::RiseProcess 
%func%]"                                                                                 (2)  

The second part—API generator, produces the SW and HW 
wrappers correctly. We brought in the concept 
“communication group” to simplify the data transfer control 
between the host and the accelerator. Each architectural unit in 
the HW has its own communication group which gathers the 
data that needs transferring between the SW and HW portions. 
The cross-boundary communication can be completed by 
simply matching the communication group number and its 
buffer space on both the SW and HW sides. Actually, the 
SW/HW data transfer job is done automatically, since both the 
SW buffer and the HW buffer will update themselves and stay 
coherent with each other when the data values on the 
partitioning boundary are changed. We are planning to build up 
multiple libraries for the API generator. They will provide 
different actual device communication APIs and various HW 
wrapper templates in order to support different simulation 
platforms, including BEE2, DRC 1000 system and other DRC 
systems.  

Lastly, we are in the process of updating the Trident 
synthesizer’s LLVM front-end and interfacing with the other 
parts of SPRI.  With such change, the input of the synthesizer 
will be switched to the LLVM IR of the partitioned-out units 
instead of the original C/C++ program. 

Since SPRI is designed for researching the simulator 
partitioning and different partitioning decision results in 
different SW and HW wrappers, three test cases have been 
performed on the simple DLX architectural model using the 
DRC Development System 1000:  

1) No inter-component communication;  

2) Inter-component communication; 

3) Clock-triggered components. 

Generally, the SPRI infrastructure has already obtained the 
basic capability to partition a general architectural model with 
various input partitioning specifications and also automatically 
generate a hybrid SW/HW co-simulator. 

We are considering adding performance evaluator or counter 
into the infrastructure. This will provide the evaluation of a 
specific partitioning. With this support, SPRI could be 
extended to automatically test different partitionings, 
reconfigure the FPGA platform and evaluate the effectiveness 
of the resulting simulator at each trial. The goal is to find out 
the most efficient partitioning for a given simulator and thereby 
largely reduce the architects’ workload on the procedure of 
repeatedly partitioning, simulating and evaluating.  

III. CONCLUSION 
It is hoped that the completed SPRI infrastructure can help 

the community evaluate different partitioning decisions and 
accelerate architectural simulation without requiring heroic 
simulator design. In the long term, SPRI has a potential to be 
applied in other fields such as embedded system design, 
general application acceleration, and self-updating FPGA 
reconfiguration by partitioning the target application and being 
integrated with automatic software and hardware co-scheduling.  
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